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We present an evolving network model in which the total numbers of nodes and edges are conserved, but in
which edges are continuously rewired according to nonlinear preferential detachment and reattachment. As-
suming power-law kernels with exponents � and �, the stationary states which the degree distributions evolve
toward exhibit a second-order phase transition—from relatively homogeneous to highly heterogeneous �with
the emergence of starlike structures� at �=�. Temporal evolution of the distribution in this critical regime is
shown to follow a nonlinear diffusion equation, arriving at either pure or mixed power laws of exponents −�
and 1−�.
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Complex systems may often be described as a set of
nodes with edges connecting some of them—the neighbors
�see, for instance, Refs. �1–3��. The number of edges a par-
ticular node has is called its degree, k. The study of such
large networks is usually made simpler by considering sta-
tistical properties, e.g., the degree distribution, p�k� �prob-
ability of finding a node with a particular degree�. It turns out
that a high proportion of real-world networks follow power-
law degree distributions, p�k��k−�—referred to as scale-free
due to their lack of a characteristic size. Also, many of them
have their edges placed among the nodes apparently in a
random way, i.e., there is no correlation between the degree
of a node and any other of its properties, such as the degrees
of its neighbors. Barabási and Albert �4� applied the mecha-
nism of preferential attachment to an evolving network
model and showed how this resulted in the degree
distributions becoming scale-free for long enough times. For
this to work, attachment had to be linear, i.e., the probability
that a node with degree k has of receiving a new edge is
��k��k+q. This results in scale-free stationary degree dis-
tributions with an exponent �=3−q.

Preferential attachment seems to be behind the emergence
of many real-world continuously growing networks. How-
ever, not all networks in which some nodes at times gain �or
lose� new edges have a continuously growing number of
nodes. For example, a given group of people may form an
evolving social network �5� in which the edges represent
friendship. Preferential attachment may be relevant here—
the more people you know, the more likely it is that you will
be introduced to someone new—but probabilities are not ex-
pected to depend linearly on degree. For instance, there may
be saturations �highly connected people might become less
accessible�, threshold effects �hermits may be prone to anti-
social tendencies�, and other nonlinearities. The brain may
also be a relevant case. Once formed, the number of neurons
does not seem to continually augment, and yet its structural
topology is dynamic �6�. Synaptic growth and dendritic ar-
borization have been shown to increase with electric stimu-
lation �7,8�, and in general, the more connected a neuron is,
the more current it receives from the sum of its neighbors.

Barabási and Albert showed that both �linear� preferential
attachment and an ever-growing number of nodes are needed
for scaling to emerge in their model. In a fixed population,

their mechanism would result in a fully connected network.
However, this is not normally observed in real systems.
Rather, just as some new edges sprout, others disappear—
less used synapses suffer atrophy, unstimulating friendships
wither. Often, the numbers of both nodes and edges remain
roughly constant. The same authors did therefore extend
their model so as to include the effects of preferential rewir-
ing �which could be applied to fixed-size networks� although
again probabilities depended linearly on node degree �9�. An-
other mechanism which �roughly� maintains constant the
numbers of nodes and edges is node fusing �10�, once more
according to linear probabilities. As to nonlinear preferential
attachment, the �growing� Barabási-Albert model was ex-
tended to take power-law probabilities into account �11� al-
though the solutions are only scale free for the linear case.

In this Rapid Communication we present an evolving net-
work model with preferential rewiring according to nonlinear
�power-law� probabilities. The number of nodes and edges is
conserved but the topology evolves, arriving eventually at a
macroscopically �nonequilibrium� stationary state—as de-
scribed by global properties such as the degree distribution.
Depending on the exponents chosen for the rewiring prob-
abilities, the final state can be either fairly homogeneous,
with a typical size, or highly heterogeneous, with the emer-
gence of starlike structures. In the critical case marking the
transition between these two regimes, the degree distribution
is shown to follow a nonlinear diffusion equation. This de-
scribes a tendency toward stationary states that are charac-
terized either by scale-free or by mixed scale-free distribu-
tions, depending on parameters.

Our model consists of a random network with N nodes of
respective degree ki, i=1,2 , . . . ,N, and 1

2N�k� edges. Ini-
tially, the degrees have a given distribution p�k , t=0�. At
each time step, one node is chosen with a probability which
is a function of its degree, ��ki�. One of its edges is then
chosen randomly and removed from it, to be reconnected to
another node j chosen according to a probability ��kj�. That
is, an edge is broken and another one is created, and the total
number of edges, as well as the total number of nodes, is
conserved. The functions ��k� and ��k� are arbitrary, but we
shall explicitly illustrate here ��ki��ki

� and ��ki��ki
� that

capture the essence of a wide class of nonlinear monotonous
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response functions and are easy to handle analytically.
The probabilities � and � that a given node has, at each

time step, of increasing or decreasing its degree can be inter-
preted as transition probabilities between states. The ex-
pected value of the increment in a given p�k , t� at each time
step, �p�k , t�, may then be written as

�p�k,t�
�t

= �k − 1��k̄�
−1p�k − 1,t� + �k + 1��k̄�

−1p�k + 1,t�

− �k�k̄�
−1 + k�k̄�

−1�p�k,t� , �1�

where k̄a= k̄a�t�=�kk
ap�k , t�. If it exists, any stationary solu-

tion must satisfy the condition pst�k+1��k+1��k̄�
st

= pst�k�k�k̄�
st which, for k�1, implies that

�pst�k�
�k

= 	 k̄�
st

k̄�
st

k�

�k + 1�� − 1
pst�k� . �2�

Therefore, the distribution will have an extremum at ke

= �k̄�
st / k̄�

st�1/��−�� �where we have approximated ke�ke+1�. If
�	�, this will be a maximum, signaling the peak of the
distribution. On the other hand, if �
�, ke will correspond
to a minimum. Therefore, most of the distribution will be
broken in two parts, one for k	ke and another for k
ke. The
critical case for �=� will correspond to a monotonously
decreasing stationary distribution, but such that
limk→��pst�k� /�k=0. In fact, Eq. �1� is for this situation
��=�� the discretized version of a nonlinear diffusion
equation

�p�k,��
��

=
�2

�k2 �k�p�k,��� , �3�

after dynamically modifying the time scale according to

�= t / k̄��t�. Ignoring, for the moment, border effects, the so-
lutions of this equation are

pst�k� � Ak−� + Bk−�+1, �4�

with A and B constants. If �
2, then given A we can always
find a B which allows pst�k� to be normalized in the thermo-
dynamic limit �12�. For example, if the lower limit is k
1,
then B= ��−2��1−A / ��−1��. However, if 1	��2, then
only A can remain nonzero, and pst�k� will be a pure power
law. For ��1, both constants must tend to zero as N→�. In
finite networks, no node can have a degree larger than
N−1 or lower than 0. In fact, one would usually wish to
impose a minimum nonzero degree, e.g., k
1. The temporal
evolution of the degree distribution is illustrated in Fig. 1.
This shows the result of integrating Eq. �1� for k
1, differ-
ent times, �=1, and three different values of �, along with
the respective values obtained from Monte Carlo simula-
tions.

The main result may be summarized as follows. For
�	�, the network will evolve to have a characteristic size,
centered around �k�. At the critical case �=�, all sizes ap-
pear, according either to a pure or a composite power law, as

detailed above. If we impose, say, k
1, then starlike struc-
tures will emerge, with a great many nodes connected to just
a few hubs �13�.

Figure 2 illustrates the second-order phase transition un-
dergone by the variance of the final �stationary� degree dis-
tribution, depending on the exponent �, where � is set to
unity. It should be mentioned that this particular case, �=1,
corresponds to edges being chosen at random for disconnec-
tion since the probability of a random edge belonging to
node i is proportional to ki.

This topological phase transition is similar to the ones that
have been described in equilibrium network ensembles de-
fined via an energy function, in the so-called synchronic ap-
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FIG. 1. �Color online� Degree distribution p�k , t� at four differ-
ent stages of evolution: t=102 ��yellow� squares�, 103 ��blue�
circles�, 104 ��red� triangles��, and 105 MCS ��black� diamonds�.
From top to bottom panels, subcritical ��=0.5�, critical ��=1�, and
supercritical ��=1.5� rewiring exponents. Symbols from MC simu-
lations and corresponding solid lines from numerical integration of
Eq. �1�. �=1, �k�=10, and N=1000 in all cases.
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proach to network analysis �14–17�. However, our �nonequi-
librium� model does not come within the scope of this body
of work since the rewiring rates cannot, in general, be de-
rived from a potential. Furthermore, we are here concerned

with the time evolution rather than the stationary states, mak-
ing our approach diachronic.

Summing up, in spite of its simplicity, our model captures
the essence of many real-world networks which evolve while
leaving the total numbers of nodes and edges roughly con-
stant. The grade of heterogeneity of the stationary distribu-
tion obtained is seen to depend crucially on the relation be-
tween the exponents modeling the probabilities a node has of
obtaining or losing a new edge. It is worth mentioning that
the heterogeneity of the degree distribution of a random net-
work has been found to determine many relevant behaviors
and magnitudes such as its clustering coefficient and mean
minimum path �18�, critical values related to the dynamics of
excitable networks �19�, or the synchronizability for systems
of coupled oscillators �since this depends on the spectral gap
of the Laplacian matrix� �20�.

The above shows how scale-free distributions, with a
range of exponents, may emerge for nonlinear rewiring al-
though only in the critical situation in which the probabilities
of gaining or losing edges are the same. We believe that this
nontrivial relation between the microscopic rewiring actions
�governed in our case by parameters � and �� and the emer-
gent macroscopic degree distributions could shed light on a
class of biological, social, and communications networks.

This work was supported by the Junta de Anadalucía un-
der Project No. FQM-01505 and by the Spanish MEC-
FEDER under Project No. FIS2009-08451.
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FIG. 2. �Color online� Adjusted variance �2 / �k�2 of the degree
distribution after 2�105 MCS against �, as obtained from MC
simulations, for system sizes N=800 ��yellow� squares�, 1200
��blue� circles�, 1600 ��red� triangles�, and 2000 ��black� diamonds�.
Top left inset shows final degree distributions for �=0.5 �light gray
�blue��, 1 �dark gray �red��, and 1.5 �black�, with N=1000. Bottom
right inset shows typical time series of �2 / �k�2 for the same three
values of � and N=1200. In all cases, �=1 and �k�=10.
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